Buna ziua,
Impartim relatia data cu \(2015\). Avem \(\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}=\frac{2014}{2015}\).
Prelucram un pic termenii din suma \(\frac{x-1}{x+1}+\frac{y}{y+2}+\frac{z+1}{z+3}\):
\(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=\frac{x+1}{x+1}-\frac{2}{x+1}=1-\frac{2}{x+1}\).
In mod similar: \(\frac{y}{y+2}=1-\frac{2}{y+2}\) si \(\frac{z+1}{z+3}=1-\frac{2}{z+3}\).
Putem scrie:
\(\frac{x-1}{x+1}+\frac{y}{y+2}+\frac{z+1}{z+3}=3-2\cdot \left ( \frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\right )=3-2\cdot \frac{2014}{2015}= \frac{2017}{2015}\).
Incercati sa folositi LaTex. Daca inca nu va descurcati, macar folositi paranteze, va rog, cand scrieti formulele (ex.:
2015/(x+1) si
nu 2015/x+1). Daca nu folositi paranteze, noi trebuie sa "ghicim" cerinta
.
Cum ati scris Dvs., se inteleg urmatoarele:
Se da \(\frac{2015}{x}+1+\frac{2015}{y}+2+\frac{2015}{z}+3=2014\) si se cere
\(x-\frac{1}{x}+1+\frac{y}{y}+2+z+\frac{1}{z}+3\).